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Holographic laser Doppler imaging of pulsatile blood flow
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We report on wide-field imaging of pulsatile motion induced by blood flow using heterodyne
holographic interferometry on the thumb of a healthy volunteer, in real-time. Optical Doppler
images were measured with green laser light by a frequency-shifted Mach-Zehnder interferometer
in off-axis configuration. The recorded optical signal was linked to local instantaneous out-of-plane
motion of the skin at velocities of a few hundreds of microns per second, and compared to blood
pulse monitored by plethysmoraphy during an occlusion-reperfusion experiment.

INTRODUCTION

One of the most commonly displayed clinical wave-
forms is the finger plethysmogram. It allows the
non-invasive measurement of pulse wave amplitude,
which reflects the changes in finger blood flow. It is usu-
ally recorded by a pressure sensor [1] or a pulse oximeter
which illuminates the skin and measures changes in
optical absorption [2–4]. Optical plethysmography is
widely available, its feasibility has even been demon-
strated using mobile phones [5, 6]. However, it does
not provide a spatially-resolved image. This limitation
can be overcome by signal processing of regular video
recordings in ambient light for time-dependent spatial
and color fluctuations enhancement [7–10]. Other
imaging approaches are designed to harness optical
phase fluctuations of coherent laser light from the
motion of body walls, either by single-point scanning
detection [11], direct image detection of temporal [12–14]
and spatial speckle contrast [15, 16], or holographic
interferometry [17, 18].

In this letter, we report on narrow band laser Doppler
imaging of superficial pulsatile motion of the thumb by
heterodyne holographic interferometry with a camera
refreshed at 60 Hz. A transient blood flow interruption
experiment in a healthy volunteer is performed and
compared to blood pulse monitoring. A major advan-
tage of this system is that no physical contact with the
studied tissue surface area is required. This could allow
assessment of non-intact skin or mucous membranes
or even the intraoperative study of tissues within the
surgical field. Moreover, the lack of surface contact
reduces the risk of infection transmission which is a
true concern with reusable contact-requiring biomedical
equipment [19], also avoiding the extra cost of disposable
contact probes.

EXPERIMENTAL SETUP

The experimental laser Doppler imaging scheme de-
signed for this study is sketched in Fig. 1. The appa-
ratus consists of a fibered Mach-Zehnder optical inter-
ferometer for off-axis [20] and frequency-shifting [21, 22]
holographic interferometry. The main optical radiation
field is provided by a 150 mW, single-mode, fibered
diode-pumped solid-state green laser (Cobolt Samba-
TFB-150) at wavelength λ = 532 nm, and optical fre-
quency ωL/(2π) = 5.6 × 1014Hz. The thumb is illumi-
nated with about ∼ 10 mW of continuous optical power,
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FIG. 1: Sketch of the fibered Mach-Zehnder heterodyne holo-
graphic interferometer. The main laser beam is split into
two channels. In the object channel, the optical field E is
backscattered by the skin. In the reference channel, the opti-
cal field ELO is frequency-shifted by two Bragg cells by ∆ω.
A standard camera records interferograms of the diffracted
fields E and ELO.
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over ∼ 40mm × 40mm. In the reference channel, an
optical local oscillator (LO) is formed by optical fre-
quency shifting. Two acousto-optic modulators (Bragg
cells, AA Opto Electronic), driven with phase-locked sig-
nals at ωC and ωC + ∆ω, are used to shift the opti-
cal frequency of the laser beam from ωL to ωL + ∆ω.
The carrier frequency ωC/(2π) is set to 200 MHz, at the
peak response of the fibered acousto-optic modulators.
The backscattered optical field E is mixed with the LO
field ELO with a non-polarizing beam splitter cube. A
Ximea MQ042MG-CM camera records interference pat-
terns at a frame rate of τ−1

S
= ωS/(2π) = 60Hz. Each

raw interferogram of 2048 × 2048 pixels, digitally ac-
quired at time t is noted I(t) = |E(t) + ELO(t)|

2
. A

small angular tilt ∼ 1◦ between E and ELO ensures
off-axis recording. The sensor is set ∼ 50 cm away
from the object plane. A convergent lens of 50 mm fo-
cal length is present in the object channel, in order to
widen the lateral field of view of the holographic detec-
tion to ∼ 50mm. The backscattered laser optical field
E(t) = E exp [iωLt+ iφ(t)] undergoes a phase variation
φ(t), as a consequence of out-of-plane motion of the illu-
minated tissue. It is mixed with the LO field from the
reference channel ELO(t) = ELO exp [iωLt+ i∆ωt], that
is tuned to a close-by intermediate frequency ωL + ∆ω.
The quantities E and ELO are complex constants and i
is the imaginary unit. The magnitude of a given opti-
cal Doppler component is retrieved by frequency down
conversion within the camera’s temporal bandwidth, en-
sured by non-linear detection of the field E by the array
of square-law sensors of the camera, that respond linearly
with the optical irradiance I(t) = |E(t) + ELO(t)|

2. The
squared magnitude of the total field received, E + ELO,
has cross-terms oscillating at the difference frequency of
the fields E and ELO

I(t) = |E|
2
+ |ELO|

2
+H(t) +H∗(t) (1)

where H(t) = EE∗

LO exp (iφ− i∆ωt) is the heterodyne
interferometric contribution, and ∗ denotes the complex
conjugate. This equation describes the temporal fluctu-
ation of the recorded irradiance at a given pixel.

SIGNAL PROCESSING

Holographic image rendering, or spatial demodulation,
is then performed onto each recorded interferogram I
with a discrete Fresnel transform [23]. In off-axis record-
ing configuration, The Fresnel transform separates spa-
tially the four interferometric terms of the right member
of Eq. 1 [20, 24]. After spatial demodulation of each inter-
ferogram, the heterodyne signal H(t) appears in the off-
axis region of the hologram, processed as follows : First,
the squared amplitude of the difference of two consecutive
off-axis holograms is formed in order to cancel very low
frequency noise contributions S2 = |H(t)−H(t− τS)|

2
.
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FIG. 2: Apparatus response (Eq. 2), calculated for τS = τE,
versus apparent (beating) frequency index n = ω/ωS. The
ticks of the horizontal axis correspond to the zeros of the
response at integer values of the index n of the beating fre-
quency nωS and the probed velocity vn = (∆ω + nωS)/(2k).

Then, to cancel laser intensity fluctuations, a normal-

ization factor
〈

S2
0

〉

=
〈

|H0(t)−H0(t− τS)|
2
〉

is formed.

The contribution H0 is measured in a region of inter-
est of the reconstructed hologram where the terms of
Eq. 1 are not present [25], and the brackets 〈 〉 account
for spatial averaging. In high heterodyne gain regime,
i.e. when |E|

2
≪ |ELO|

2
, the quantity

〈

S2
0

〉

is dominated
by shot-noise of the LO [26, 27], which scales up lin-

early with |ELO|
2
. The averaged signal

〈

S2
〉

scales up

linearly with |E|2 |ELO|
2. Hence the processed Doppler

signal
〈

S2
〉

/
〈

S2
0

〉

is a heterodyne measurement of the

optical power (or irradiance) |E|2, which does not depend
on the LO power [28].

NARROWBAND APPARATUS RESPONSE

Two-phase demodulation of interferograms recorded
with a sampling frequency approximately equal to the
reciprocal of the exposure time (τ−1

S
≃ τ−1

E
) results in a

narrowband detection with an apparatus response plot-
ted in Fig. 2. This response filters-off optical contribu-
tions which are not shifted in frequency, i.e. statically-
scattered light. For the backscattered field’s irradiance
|E|2, this response is [29, 30]

B(ω) =
1

ω2τ2
E

sin2
(ωτS

2

)

sin2
(ωτE

2

)

(2)

where ω is the apparent frequency recorded by the cam-
era, as a result of heterodyne beating.
Let’s assume that at the short time scale of the sam-

pling process t < τS = 2π/ωS, the local instant velocity
is approximately constant. v(t) ≈ v(t− τS) ≈ v. In other
words, its magnitude v is identified to the time-averaged
value of the instant velocity during τS, so we can simply
write the local optical phase variation due to the trans-
verse displacement of the skin as φ(t) = 2kvt = ωt, when
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the illumination and the scattered wave vectors are per-
pendicular to the skin’s surface. The optical wave num-
ber is k = 2π/λ ≃ 1.2 × 107 rad.s−1, and ω = 2kv. Now
let’s consider temporal variations of the instant veloc-
ity of norm v(t) at long time scales t > τS. The light
reflected by the skin undergoes a local time-dependent
Doppler shift

ω(t) = 2kv(t) (3)

To assess a given instant velocity v0, the LO is detuned
by ∆ω = 2kv0. According to Eq. 3 and Eq. 2, it results
in the detection of Doppler-shifted light with a velocity-
dependent efficiency B (2k(v − v0)). The range of probed
velocities v within the two first lobes of the apparatus
response B is

[v−1, v+1] =
[

v0 −
ωS

2k
, v0 +

ωS

2k

]

(4)

EXPERIMENT

An experiment on the fingers of healthy volunteers un-
dergoing arterial occlusion provoked with a pressure cuff
was conducted. The pressure cuff was placed around
the right arm. The cuff bladder pressure was measured
using a transducer (MLT0670, ADInstruments, Oxford,
UK). The signal was amplified, digitized at 200 Hz us-
ing an analog/digital converter (Powerlab; ADI Instru-
ments), and recorded on a computer. The arterial pulse
wave was monitored using a piezo-electric pulse trans-
ducer (TN1012/ST, ADInstruments) placed on the index
of the imaged hand. The signal was recorded at 200 Hz.
The thumb was illuminated by the green laser beam. A
comfortable support for the forearm was used to avoid
stray motion. A preliminary experiment was performed
to monitor the Doppler response at three different detun-
ing frequencies ∆ω/(2π) : 60Hz, 600Hz, and 1020Hz;
choosing a detuning frequency which is an integer num-
ber of times the sampling frequency is not mandatory,
but is has the advantage of canceling efficiently statically-
backscattered light, according to the apparatus response
(Fig. 2). These frequencies correspond to probed ve-
locities of 16µm.s−1, 160µm.s−1, and 271µm.s−1, re-
spectively. Fig. 3 shows plots over time of pulse wave-
forms (plethysmograms) and holographic Doppler signal
10 log10

(〈

S2
〉

/
〈

S2
0

〉)

(in dB) averaged in a region of in-
terest, placed on the central part of the image of the
thumb. At very low frequency detunings (. 100Hz), mo-
tion artifacts prevented the measurement of pulsatile mo-
tion. When the frequency was set to ∆ω/(2π) = 1020Hz,
which corresponded to a measurement range of instant
velocities [v−1, v+1] = [255µm.s−1, 287µm.s−1], centered
at v0 = ∆ω/(2k) = 271µm.s−1 (Eq. 4), the Doppler sig-
nal appeared to be less prone to motion artifacts. The
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FIG. 3: Doppler signal (a,c,e), averaged in the central part of
the image of the thumb (Fig. 4), and concurrent blood volume
signal (b,d,f), versus time. Detuning frequencies : ∆ω/(2π) =
60Hz (a), ∆ω/(2π) = 600Hz (c), ∆ω/(2π) = 1020Hz (e).
The synchronization accuracy of holographic and standard
blood volume measurements is of the order of ±0.5 s. a.u.:
arbitrary units.

Doppler signal at 1020 Hz recorded over ∼ 8 s, and com-
posite images of the regionalized Doppler response (rep-
resented in red) are displayed in Fig. 4 and in this video.
This value of the frequency shift was chosen for the blood
flow interruption experiment, reported in Fig. 5. The cuff
pressure and four indicators were monitored : pulse wave,

http://youtu.be/kGPWyUIM1OA
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FIG. 4: Optical Doppler signal, acquired for a detuning fre-
quency ∆ω/(2π) = 1020Hz, averaged in the region of interest
depicted in (i), versus time. Composite images of the corre-
sponding signal at low (i) and high (ii) signal level. Red color
indicates signal presence. The whole sequence is reported in
in this video.

5 s-averaged pulse wave magnitude, Doppler signal, and
5 s-averaged Doppler signal. Blood flow to the forearm
was occluded by increasing the cuff pressure to ∼ 200
mmHg during a ∼ 90 s time interval. During occlusion,
both recorded signals dropped. Short spikes due to mo-
tion artifacts were observed on the Doppler signal; they
were more pronounced at lower Doppler frequency. On
releasing the cuff pressure, a transient increase of both
the pulse volume and the Doppler signal is observed as
expected, due to post-occlusive hyperemia. A time-lapse
sequence of the composite Doppler image of the thumb
during the occlusion-reperfusion experiment is reported
in this video. A limitation of holographic Doppler imag-
ing of pulsatile blood flow with visible laser light is its
sensitivity to low velocities, which lets motion artifacts
prevent the measurement of pulsatile motion, and re-
quires stabilization of the monitored tissue. This issue
might be alleviated with infrared light.

CONCLUSION

In conclusion, we demonstrated wide-field imaging and
monitoring of pulsatile motion of the thumb of a healthy
volunteer. Narrowband optical Doppler video imaging in
real-time was performed with a off-axis and frequency-
shifting holographic interferometer. Numerical image
rendering was performed by discrete Fresnel transforma-
tion and two-phase temporal demodulation at a 60 Hz
framerate. The measured contrast was linked to the in-
stant velocity of out-of-plane motion, of the order of a few
hundreds of microns per second. Robust non-contact mo-
tion monitoring was achieved. This was illustrated by an
occlusion-reperfusion experiment, in which the proposed
detection scheme was compared to plethysmography.
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FIG. 5: Time traces of indicators monitored during a hypop-
erfusion experiment. Cuff pressure (a), plethysmogram [raw
data (b), 5 s time-average of the magnitude (c)], holographic
laser Doppler signal recorded at 1020 Hz and averaged spa-
tially in the nail area [raw data (d), 5 s time-average (e)]. A
time-lapse sequence of the composite Doppler image of the
thumb is reported in this video.
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